
www.manaraa.com

Performance Evaluation of Object-Oriented Active
Database Systems Using the BEAST Benchmark

Andreas Geppert
Department of Computer Science, University of Zurich, Winterthurerstr. 190, CH-8041 Zürich, Switzerland.
E-mail: geppert@ifi.unizh.ch

Mikael Berndtsson
University of Skövde, Box 408, S-541 28 Skövde, Sweden. E-mail: spiff@ida.his.se

Daniel Lieuwen
Lucent Technologies/Bell Labs Innovations, Bell Laboratories, 700 Mountain Ave., 2B-212, Murray Hill, NJ 07974,
USA. E-mail: lieuwen@research.bell-labs.com

Claudia Roncancio
University of Grenoble, Lab. LSR - IMAG, BP 72, F-38402 Saint Martin d’Hères Cedex, France.
E-mail: Claudia.Roncancio@imag.fr

This paper uses the BEAST benchmark to present the
first comprehensive performance study of object-ori-
ented active database management systems (ADBMS).
BEAST stresses the performance-critical components
of active systems: event detection, event composi-
tion, rule retrieval, and rule firing. Method invoca-
tion events and transactional events are taken into
account. Four systems, namely ACOOD, NAOS, Ode,
and SAMOS, have been tested with the benchmark tests
of BEAST. The performance measurements demon-
strate achievements in the area of active database
technology, but also indicate trade-offs (e.g., between
performance and functionality). Finally, the benchmark
identifies optimizations and provides hints to ADBMS
designers about producing systems with adequate per-
formance and functionality — as well as some open
issues. © 1998 John Wiley & Sons, Inc.

1. Introduction

In recent years, active database management sys-
tems (ADBMS) (e.g., [34]) have become a hot topic of
database research, and restricted ADBMS-functionality
is already offered by some commercial systems (e.g.,
[30, 31]). An ADBMS implements “reactive behavior”
since it is able to detect situations in the database and

Received June 1, 1997; accepted February 19, 1998
Recommending editor: Ron Morrison

c© 1998 John Wiley & Sons, Inc.

beyond and to perform corresponding actions (specified
by the user and/or DB-administrator). Applications us-
ing reactive behavior do thus not require “polling” tech-
niques in order to detect relevant situations.

Like any system, an ADBMS should implement its
functionality efficiently. Indeed, performance issues have
recently been considered as one of the most important
topics to be addressed to meet the requirements of ap-
plications and potential users [33]. Furthermore, perfor-
mance aspects also play a crucial role from a system
point of view:

• ADBMS researchers have developed different tech-
niques for ADBMS tasks such as composite event
detection [9, 17, 19]; thus, it is necessary to compare
the performance of these approaches.

• Different architectural approaches have been devel-
oped and need to be compared (e.g., integrated v. lay-
ered architectures [5]).

Systematically benchmarking prototype ADBMS will
help advance the state of the art by allowing those build-
ing new ADBMS to properly analyze the trade-offs of
the various implementation strategies. It will also help
improve existing ADBMS and identify open issues in
ADBMS construction. The object-oriented systems we
have tested are prototypes, and as such are available on
a restricted set of platforms. Furthermore, their func-
tionality is not yet standardized, and they thus exhibit a

THEORY AND PRACTICE OF OBJECT SYSTEMS, Vol. 4(3), 135–149 1998 CCC 1074-3227/98/030135-15

www.manaraa.com

high degree of heterogeneity with respect to function-
ality and applied implementation techniques. As a con-
sequence, the performance of these systems cannot be
compared in a straightforward manner. Nevertheless, we
regard benchmarking of these prototypes as a crucial ef-
fort, helping developers understand performance charac-
teristics and trade-offs when incorporating active func-
tionality in products.

Currently, performance measurements even for sin-
gle ADBMS are quite rare [22, 28]. In this paper we
therefore first identify performance-critical aspects of
ADBMS and then introduce the BEAST benchmark [22]
(BEnchmark for Active database SysTems). We also re-
port on results obtained from applying BEAST to four
object-oriented ADBMS (ACOOD [2], NAOS [11], Ode
[29], and SAMOS [18]).1 We interpret the benchmark re-
sults obtained for each system and make some general
conclusions. The interpretations not only show achieve-
ments in recent ADBMS-research but also illustrate per-
formance drawbacks and open problems with respect to
performance. Moreover, BEAST verifies some assump-
tions made elsewhere on the performance of ADBMS,
while rejecting others.

BEAST focuses on basic ADBMS-tasks such as event
detection, rule retrieval, and rule execution. It is intended
primarily for testing the active functionality of DBMS,
since appropriate benchmarks for passive DBMS have
already been developed (e.g., [7, 25]). Furthermore, we
concentrate on object-oriented ADBMS, since — al-
though we focus on the active part — the underlying
data model has some influence on ADBMS performance.
Finally, BEAST is a single-user benchmark, because de-
veloping a benchmark is a complex task anyway and
considering performance in multi-user mode aggravates
complexity significantly.

The next section gives a short introduction of
ADBMS, performance-critical aspects of ADBMS, and
the tested systems. Section 3 describes the benchmark,
and Section 4 presents the results. Section 5 concludes
the paper.

2. Active Database Management Systems

In this section, we give a short introduction of
ADBMS. Details can be found in [34]. We then briefly
describe the most important features of the systems
tested with the BEAST benchmark.

2.1. ECA-Rules

An ADBMS is a DBMS that supports the specification
and implementation of reactive behavior in addition to
standard database functionality. Most ADBMS support
event-condition-action rules (ECA-rules) [14] for defin-
ing reactive behavior. An event is either an explicitly
specified point in time or a description of a “happening

of interest” to the user (that is detectable by the database
system). After an event is detected, the corresponding
rule will be fired. Events can be either primitive (e.g.,
a method invocation, a transaction begin or commit, a
time event, an abstract event2) or composite (e.g., con-
junction, sequence, disjunction, negation, repeated occur-
rence). Composite event restrictions are conditions that
must hold for component events in order to form a le-
gitimate composition. Examples are same object (the
component events are all method invocation events for
the same receiver object) and same transaction (all the
component events have occurred within one transaction).

A condition is either a Boolean function or a database
query. If the condition evaluates to true (or returns a non-
empty result), the action is executed. An action is typi-
cally written in the data manipulation language (DML)
of the ADBMS.

The execution model of an ADBMS determines how
event detection, condition evaluation, and action exe-
cution are performed. The consumption mode defines
which event occurrences to use for event composition
when multiple candidates exist. Examples of consump-
tion modes include recent (select the youngest possi-
ble component event occurrence and discard older ones),
chronicle (select the oldest possible one), and continuous
(select all existing candidates).

The coupling modes of a rule specify when the con-
dition and action parts of a rule are executed with re-
spect to the transaction that triggered the event. Typical
coupling modes are immediate (directly after the event
has been detected), deferred (at the end of the trigger-
ing transaction, but before commit), and decoupled (in a
separate, independent transaction). The coupling modes
for conditions relate condition evaluation to the trigger-
ing event; the coupling modes for actions relate action
execution to condition evaluation. The execution model
also defines how to process multiple rules that are trig-
gered by the same event. One possibility is to let the user
specify (partial) orders, e.g., by means of rule priorities.

2.2. ADBMS-Architecture

In order to implement reactive behavior, an ADBMS
contains several components not contained in a passive
DBMS. Defining ECA-rules requires a rule definition
language and a corresponding compiler. Rule execution
requires one or more event detectors, a rule manager
(for creating/retrieving information on rules and events),
and a rule execution component. The latter collects rules
ready to be executed and triggers the execution of each
rule in a manner consistent with its coupling mode.

BEAST considers event detection, rule management,
and rule execution since they implement the three phases
that comprise active behavior. They are thus contained
in all ADBMS-architectures (e.g., [5, 9, 23]) and must
be considered by performance measurements. After an

136 THEORY AND PRACTICE OF OBJECT SYSTEMS–1998

www.manaraa.com

event occurs, it must be detected, i.e., ADBMS compo-
nents must recognize (or be notified) that the event has
happened. At the end of the event detection phase, the
event is signaled.3 The second phase (rule management)
starts as soon as the event has been signaled and de-
termines whether (and which) rules must be executed.
Internal information that links event descriptions with
rule definitions must be taken into account. In the simple
case of immediate coupling, rule management is directly
followed by the rule execution phase. In this phase, the
triggered rules are executed.

2.3. ADBMS-Applications

Benchmarks usually test the performance of systems
under typical applications. Thus, in order to develop an
application-oriented benchmark for ADBMS, a canoni-
cal application has to be found. However, applications
of ADBMS are quite varied (see, e.g., [8]), and in fact
the tested prototypes are intended for rather different ap-
plication domains. For instance, the tested systems have
been applied in the following types of applications and
systems:

• consistency constraints [21],
• control of application systems (e.g., stock trading sys-

tems) [20],
• coordination of agents in cooperative information

systems [3],
• platform for process-centered software engineering

platforms [12],
• execution engine in workflow management [24, 32].

Some requirements and principles are common among
all the applications; e.g., an object-oriented context and
composite events to express complex situations. How-
ever, other aspects differ greatly, such as the required
lifetime of events, consumption modes (and thus the size
of event histories), coupling modes, etc.

We therefore conclude that a single typical applica-
tion for object-oriented ADBMS does not exist, and that
selecting one out of the various applications for bench-
marking very likely would put some systems at an ad-
vantage (namely those, that implement exactly those fea-
tures required by the application), while others would be
put at a disadvantage (namely those that offer too much
functionality). Instead, the benchmark described below
will focus on the basic functionality of ADBMS (such
as event detection), and will be used to find out the im-
pacts of ADBMS-features on performance.

2.4. Performance-Critical Aspects of ADBMS

In this section, we identify the aspects that are very
likely to influence ADBMS-performance. We also hy-
pothesize as to how these aspects influence ADBMS-
performance. Later in the paper, we will use the BEAST
benchmark to verify or falsify these hypotheses.

2.4.1. Functionality vs. performance. In general, we
are interested in the relationship between functionality
and performance. By functionality, we mean the expres-
siveness of the rule specification language, including the
set of provided event type constructors, coupling modes,
and further rule execution constraints such as priori-
ties. In general, we would expect that performance ben-
efits can be achieved if the functionality of the ADBMS
is restricted. Alternatively, ADBMS-implementors might
sacrifice performance for the sake of functionality.

We hypothesize that large sets of event type con-
structors (especially for composite events) degrade per-
formance, since they also imply that a more complex
composite event detector is required. Moreover, if re-
strictions on composite events can be formulated in the
language (same transaction), then event composition is
expected to be less efficient, since the selection of com-
ponent events is slowed down.

2.4.2. Event detection. The event detection method
employed is expected to have great impact on perfor-
mance, since there are different strategies which can be
pursued:

• event detection can be done locally or centrally,
• it can be implemented according to different tech-

niques (e.g., finite state machines, syntax trees, Petri
Nets).

Local event detection means that events are detected
“within” objects or that dedicated event detectors are
used. There are two varieties. Class-specific local event
detectors (e.g., as in Ode) have events/rules specified in
class definitions. In this case, each object (whose class
defines one or more triggers) detects events that hap-
pen at that object. Since events are always class-specific,
composite events involving component events defined
for different classes cannot be formulated easily.4 Event-
specific local detection uses one event detector per event
type (e.g., each method event type used in one or more
ECA-rules has its own event detector). Programs or ob-
jects that can generate events of a certain type maintain
references to the corresponding event detector, which is
notified whenever the event occurs. This approach parti-
tions the global event detector. It is thus beneficial with
respect to performance, since the relevant portion of the
“global” event detector need not be identified upon event
occurrences, and because each detector can exactly main-
tain the information (e.g., on component events) that is
needed.

The centralized approach uses a small set of event de-
tectors, each one being responsible for a class of event
types (e.g., transaction events, composite events). Thus,
all events are signaled through the same function, and
relevant structures needed for composite event detection
must first be identified/located before composite event

THEORY AND PRACTICE OF OBJECT SYSTEMS–1998 137

www.manaraa.com

detection can proceed and rules to be executed can be de-
termined. Such a centralized detector is likely to become
a bottleneck.

In event-specific and centralized approaches, event
and rule definitions are likely to be stored as database
objects, while in the class-specific approach they are part
of class definitions. Since storing ECA-rules as database
objects means pursuing a (partially) interpretative ap-
proach, we expect performance to be worse than for a
compilation-based alternative using class-specific ECA-
rules and event detection.

2.4.3. Event (history) management and event con-
sumption. Since a composite event is built using com-
ponent events, the composite event detector has to check
whether there are candidate components available, and
— if yes — it has to select appropriate ones for forming
the new composition. Thus, it is performance-critical to
maintain these histories in a way that allows fast retrieval
of component occurrences, since the set of component
candidates can be very large.

The consumption mode can also be performance-
critical — especially if large sets of component occur-
rences exist (and therefore have to be browsed in order
to determine components for composition). In particu-
lar, we expect the recent mode to be the most efficient
consumption mode, since it is rather immune to large
backlogs of component occurrences.

2.4.4. Rule execution. Condition evaluation and ac-
tion execution also influence ADBMS-performance. In
the brute-force solution, each condition evaluation or ac-
tion execution interrupts the application program execu-
tion and the ADBMS-process; if there are multiple rules
to be triggered, the ADBMS executes them sequentially.
In more sophisticated implementations, the ADBMS is
able to evaluate conditions and to execute actions concur-
rently with its “normal” processing. If there are multiple
rules to be executed at one point in time, they could also
be executed concurrently (unless their execution order is
constrained by priorities). Such a concurrent execution
is likely to speed up the ADBMS.

A sophisticated ADBMS might apply techniques pro-
posed for query evaluation and production rule process-
ing to optimize condition evaluation (e.g., several similar
or even identical conditions may have to be evaluated to-
gether at times; then, the optimizer could recognize that
the common parts need to be evaluated only once, de-
creasing overall condition evaluation time).

2.4.5. Impact of architectural style. By “architectural
style,” we mean how the ADBMS is structured. In an
integrated architecture, the active components are inte-

grated with the passive parts. Thus, components such as
event detectors and rule execution components can eas-
ily interface with other components and can access their
information. It is also possible to modify or extend the
passive part when implementing the active behavior. In
the layered architecture, the active functionality is imple-
mented on top of a passive one, and passive components
cannot be extended or modified. It has been claimed else-
where [5] that the better opportunities to integrate active
and passive components in the integrated architecture
leads to better performance.

2.4.6. Impact of (growing) rulebase size. While the
aforementioned aspects refer to the ADBMS itself and
its components, the final performance-critical aspect is
the rulebase, i.e., the set of currently defined event types
and rules. A practically useful ADBMS must be able to
handle large rulebases with reasonable performance, i.e.,
it should scale well for growing rulebases. Since indexing
techniques can be used to efficiently retrieve event/rule
definitions, we generally expect that event detection and
rule execution performance is independent from the rule-
base size (i.e., constant).

Furthermore, the ADBMS should not only scale well
for growing numbers of event types, but also for growing
sets of event occurrences (i.e., large event histories). At
least for composite events without restrictions such as
same transaction, we also expect that event detection
performance does not depend on the size of the event
history.

2.4.7. Cross-effects. Each of these aspects cannot be
considered separately, but there will typically be depen-
dencies between them. For instance, performance can be
traded for functionality, and the efficiency of an event
detection technique depends on the event consumption
mode.

2.4.8. Summary. Below we summarize the aforemen-
tioned hypothesis.

H1: More expressive power of the ECA-rule model leads
to worse runtime performance.

H2: A large set of event type constructors degrades run-
time performance.

H3: Support for composite event restrictions degrades
performance.

H4: Centralized event detectors perform worse than ded-
icated or class-specific event detectors.

H5: Class-specific ECA-rules and event detection are
more efficient.

H6: Support for event histories degrades performance.
H7: The recent consumption mode is the most efficient

one.
H8: Concurrent rule execution improves performance.

138 THEORY AND PRACTICE OF OBJECT SYSTEMS–1998

www.manaraa.com

H9: Incremental condition evaluation of sets of conditions
improves rule execution performance.

H10: Integrated architectures are more efficient than lay-
ered architectures.

H11: ADBMS-performance should be independent of the
rulebase size.

H12: Event detection should scale well for growing event
histories.

2.5. The Tested Prototypes

We have tested four ADBMS prototypes whose rele-
vant features are briefly described below:

• ACOOD [2, 15] is built on top of the commercial
OODBMS ONTOS DB 3.0,

• NAOS [11, 10] which extends the OODBMS O2 [1]
(version 4.5.6),

• Ode [29] exists in two variants: a disk-based version
built on EOS [4] and a main-memory version built on
Dali [26] (the disk-based one was benchmarked), and

• SAMOS [18] uses the commercial OODBMS Object-
Store as a platform.

All the systems support method events and abstract
events; only ACOOD does not offer transaction events.
The systems support different sets of composite event
constructors; however most of those required for the
BEAST tests can be expressed in the rule definition
language of each system. The systems use four dif-
ferent techniques for composite event detection: arrays
(ACOOD, [15]), extended finite state machines (Ode,
[19, 29]), event graphs (NAOS, [10]), and Petri Nets
(SAMOS, [17]). The provided consumption modes [9]
are chronicle (Ode, SAMOS), continuous (NAOS), and
recent (ACOOD).

ACOOD and SAMOS allow arbitrary Boolean func-
tions as conditions. Conditions in NAOS are written in
the Object Query Language (OQL). In Ode, masks can
be defined, which are conditions that must be evaluated
to determine if a (sub)event of an event has occurred or
not.5 Triggers must be activated to have any effect. There
can be many activations per trigger.

Actions in each of the systems are arbitrary statements
in the underlying database programming language (C++
for ACOOD and SAMOS, O2C for NAOS, the C++-
extension O++ for Ode). ACOOD and SAMOS can pass
event parameters to conditions and rules; in Ode, param-
eters used in masks/actions are passed to the associated
trigger at activation time. NAOS can pass parameters
only in case of update events.

3. BEAST: A Benchmark for ADBMS

In this section, we first identify design decisions for

the BEAST benchmark (see [27] for how to design a
benchmark). We then describe BEAST in detail.

STYLE OF TESTS

BEAST is intended to test the basic functionality of
ADBMS and to determine performance drawbacks of
ADBMS-designs and implementations. It does not pro-
pose a typical application or test the performance of
ADBMS for such an application (see Section 2.3). We
are thus measuring the performance of ADBMS on a
micro level from a designer’s perspective.

INFLUENCE OF PASSIVE COMPONENTS

ADBMS use the functionality of passive DBMS. They
need services from the passive part, such as persistence,
transactions, and query processing. BEAST thus tests
the entire active DBMS, and the performance of pas-
sive parts typically will influence ADBMS-performance.
We do not test ADBMS at a finer-grained level (e.g., by
turning off locking/logging) because the required func-
tionality is not available in all systems. Consequently, an
ADBMS that uses a slow platform or does not exploit
the capabilities of the underlying system in an optimal
way will incur a performance penalty. Nevertheless, as
the various measurements have shown, BEAST makes it
possible to identify performance bottlenecks of the ac-
tive part by comparing the different tests performed for
a specific system.

SELECTION OF METRICS

Our major metric is elapsed time. Each BEAST test
repeatedly raises events, which are then detected by the
ADBMS. Elapsed time is defined as the time that passes
until control returns to the test program (i.e., after rule
execution completes).

3.1. Benchmark Design

BEAST uses the schema and the programs of the OO7
benchmark [7] to populate the test databases. One reason
for reusing parts of OO7 is to easily obtain a schema and
database. Moreover, for a given object-oriented ADBMS,
BEAST and OO7 together measure the performance of
both the active and the passive parts of a system, respec-
tively.

BEAST defines several tests for event detection, rule
management, and rule execution (see Section 2.2). Thus,
the result of running BEAST is a collection of figures
instead of a single figure for each ADBMS (much like
OO7). Note that we cannot test the performance of each
component directly, due to lacking access to internal in-
terfaces of an ADBMS. Therefore, most BEAST tests
specify one or more rules that are triggered when exe-
cuting the test, i.e., the test actually causes the event oc-

THEORY AND PRACTICE OF OBJECT SYSTEMS–1998 139

www.manaraa.com

currence. To stress the performance of single phases, we
keep all other phases as small as possible. For instance, a
rule testing event detection performance simply defines
the condition to be false, so that condition evaluation is
cheap and no action is executed. Additionally only one
rule is triggered by such an event to minimize the rule
management overhead.

BEAST tests each ADBMS in single-user mode, i.e.,
the performance of systems in the presence of multiple
application programs concurrently generating events is
not measured. In this context, “single-user” mode means
that BEAST test programs are the only active applica-
tion programs, while functionality pertaining to multi-
user mode (e.g., concurrency control) is not turned off
during testing. The reason for this restriction is that we
first wanted to develop systematic performance evalua-
tion tests for ADBMS and their implementation tech-
niques, a problem that is significantly aggravated for
multi-user mode (see [6] for a discussion of the prob-
lems that have been encountered for the development of
a multi-user OO7). For instance, the number of dimen-
sions/factors that have an impact on performance grows
significantly, and there are much more complex interre-
lationships between them with respect to performance.

Next, we describe each test and show the rule(s) in
pseudo-code (see Table 1, where “CM” stands for “cou-

pling mode” and “P” for “priority”). Note that the tests
are not always enumerated consecutively, since some of
the ones originally proposed [22] have been omitted in
this paper (e.g., because some of the tested systems do
not support the required functionality).

3.1.1. Tests for event detection. Event detection tests
focus on the time it takes to detect primitive or composite
events.

TESTS FOR PRIMITIVE EVENT DETECTION

Three BEAST tests refer to primitive event detection:

1. detection of object updates (ED-01),
2. detection of method invocation (ED-02),
3. detection of transaction events (ED-03).

The tests ED-01, ED-02, and ED-03 measure detec-
tion of single events. The corresponding rules for all tests
have a false condition and an empty action in order to
restrict the measured time to event detection, as far as
possible. Coupling modes for actions and conditions are
immediate.

We illustrate the execution of tests with the test ED-
02. First, the actual time is obtained, and then the event
is forced to occur multiple times (in this case, a method
is invoked). Note that in this way we know the point

TABLE 1. The BEAST rule schema.

Rule Event Condition Action CM P

ED-01 update(AtomicPart) false alert ... imm -

ED-02 before AtomicPart->DoNothing

ED-03 before commit(ED03_TX)

ED-06 EvED-061 ; EvED-062

ED-07 ! EvED-07 within
[begin(ED07_TX), commit(ED07_TX)]

ED-08 times (EvED-081, 10)

ED-09 times (EvED-091, 3);
(EvED-092 | EvED-093) ; EvED-094

ED-10 Module->DoNothing;
Module->setDate: same object

ED-11 AtomicPart->setX &
AtomicPart->setY: same transaction

RM-01 EvRM-01

RE-01 EvRE-01 true imm.

RE-02 EvRE-02 def

RE-03 EvRE-03 dec

RE-04a Document->DoNothing o->searchStr("I am") > 0 alert... imm

RE-04b o->setAuthor()

RE-04c o->setDate()

RE-04d o->replaceTxt("I am", "This is");

RE-05a Document->DoNothing2 o->searchStr("I am") > 0 alert... 1

RE-05b o->setAuthor() 2

RE-05c o->setDate() 3

RE-05d o->replaceTxt("I am", "This is") 4

140 THEORY AND PRACTICE OF OBJECT SYSTEMS–1998

www.manaraa.com

in time of event occurrence. The ADBMS subsequently
detects the event, determines attached rules, and executes
them. It then returns control to the test program. Finally,
the test program again records the time and computes
the elapsed time.

TESTS FOR COMPOSITE EVENT DETECTION

Composite event detection typically starts after a
(primitive or other composite) event has been detected.
The event detector then checks whether the detected
event participates in a composite event. This is gener-
ally done in a stepwise manner, e.g., by means of syn-
tax trees [9], automata [19], or Petri nets [17]. Compos-
ite event detection is measured by tests ED-06 through
ED-11.

In order to stress the time needed for composite
event detection, we use abstract events in the definitions
of composite events wherever possible. Using abstract
events enables more accurate measurements, since only
the time for event signaling is required and primitive
event detection is not necessary. In order to measure the
entire event composition, the tests raise the component
events directly one after the other.

BEAST contains six tests for the detection of com-
posite events:

1. detection of a sequence of primitive events (ED-06),
2. detection of the non-occurrence of an event within a

transaction (negative event, ED-07),
3. detection of the repeated (ten times) occurrence of a

primitive event (ED-08),
4. detection of a sequence of events that are in turn com-

posite (ED-09),
5. detection of a conjunction of method events occurring

for the same object (ED-10),
6. detection of a conjunction of events raised within the

same transaction (ED-11).

Since we are interested in the time for event detec-
tion, conditions, actions, and coupling modes are kept as
simple as possible. Tests ED-06 through ED-08 measure
event detection for common composite event construc-
tors. Test ED-09 considers one specific constructor ap-
plied to events that are in turn composite. Finally, ED-10
and ED-11 measure the performance of event detection
when the events of interest are restricted by event pa-
rameters.

3.1.2. Tests for rule management. The second group
of tests considers rule management. It is based on the
observation that an ADBMS has to store and retrieve
the definition and implementation of rules, be it in the
database, as external code linked to the code of the
ADBMS, or as interpreted code. Apparently, the time it
takes to retrieve rules influences ADBMS performance.
Rule management tests measure rule retrieval time, but

they do not consider rule definition and rule storage.
These services are used infrequently, and thus their effi-
cient implementation is less important.

The test RM-1 raises an abstract event, evaluates a
condition to false, and therefore does not execute any
action. The three parts are kept that simple in order to
restrict the measured time to the rule retrieval time as
far as possible.

3.1.3. Tests for rule execution. The tests for rule ex-
ecution are separated into two groups: one for the exe-
cution of single rules, and one for the execution of mul-
tiple rules. The first group of tests (RE-01 through RE-
03) determines how quickly rules can be executed. The
execution of a single rule consists of loading the code
for conditions and actions and of processing or inter-
preting these code fragments. Different approaches for
linking and processing condition and action parts can be
compared by means of the tests in this group. Differ-
ent strategies can also be applied for executing multiple
rules all triggered by the same event (e.g., sequential or
concurrent execution). The performance characteristics
of these approaches are tested by the second subgroup.

For the execution of single rules, we consider three
rules with different coupling modes. An abstract event is
used, the condition is always true, and the action is an
alert command in rules RE-01, -02, and -03. The cou-
pling mode of the condition is always immediate. The
coupling modes of the actions are immediate (RE-01),
deferred (RE-02), and decoupled (RE-03). The inten-
tion of these tests is to measure the overhead needed for
storing the fact that the action still needs to be executed
at the end of the transaction (deferred), as well as the
overhead necessary to start a new transaction in the de-
coupled mode. In order to stress these aspects of rule ex-
ecution, we use an abstract event in order to avoid event
detection, and use a simple true condition and a simple
action. Note that the performance of condition evalua-
tion and action execution is not of interest, because it is
determined by the “passive” part of the DBMS.

The fourth test (RE-04) for rule execution considers
four rules all triggered by the same event. Conditions
and actions are more complex than in the previous tests,
in order to observe the effects of optimizing the condi-
tion evaluation and of concurrency. All RE-04 rules have
the same condition. Hence, an ADBMS that recognizes
that the actions do not affect the truth of the condition
and that the conditions are identical (e.g., if it is able
to optimize sets of conditions) will perform better than
a non-optimizing ADBMS. All rules have the coupling
modes (immediate, immediate). No ordering is defined
for the four rules. An ADBMS that is able to process
conditions and actions in parallel or at least concurrently
will thus perform better in this test. RE-05 is similar to
RE-04, with the exception that priorities are specified.

THEORY AND PRACTICE OF OBJECT SYSTEMS–1998 141

www.manaraa.com

3.2. Factors and Modes

A crucial step when designing a benchmark is the
proper identification of factors [27], i.e., parameters that
influence performance measurements. Several parame-
ters of a database can have an impact on the performance
of an ADBMS. In addition to the database parameters
relevant for benchmarking a passive DBMS (e.g., buffer
size, page size, etc.), these include:

• the number of defined events,
• the number of defined rules,
• the number of partially processed (i.e., not yet con-

sumed) events in the system.

In the ideal case, the time to detect events is constant,
i.e., independent of the number of defined events. How-
ever, especially for composite events, it may be the case
that the event detection process for single events slows
down as more events are added to the system. Further-
more, an ADBMS needs to store and retrieve internal
information on event definitions during (or after) event
detection. Apparently, a large number of event defini-
tions can increase the time needed to retrieve event in-
formation. It is thus worth investigating how large ex-
ecution times are when the number of events increases.
This number is therefore included as a factor. In general,
about 50% of the events are defined as composite events.

Furthermore, the total number of defined rules is rele-
vant for performance. Recall that rule information has to
be retrieved before rule execution. While a small number
of rules can be entirely loaded into main memory with-
out problems when the ADBMS starts execution, this is
no longer possible if the rulebase is large — rules must
be selectively loaded upon rule execution. Thus, deter-
mining how efficiently an ADBMS can handle large sets
of rules and how the system behaves when the number
of rules grows larger is important.

Ultimately, the performance of composite event de-
tectors can depend on the previous event history. Specif-
ically, we expect the performance of event composition
to depend on the number of events that are candidate
components for composite event detection. For the tests
ED-06 and ED-09 through ED-11, the number of com-
ponent events which are used to initialize the composite
event detector is thus a parameter.

For the three factors, we choose four possible values
for an empty, a small, a medium, and a large rulebase (see
Table 2). Tests for larger rulebases are simple to produce,
since the values of all factors can be specified as param-
eters of the rulebase creation program. Many rules and
events will actually not be used by the benchmark, i.e.,
their execution is not measured. However, they are im-
portant in order to increase the load of the ADBMS as
well as the data/rulebase size. These “dummies” there-
fore indicate whether the ADBMS is able to handle large
sets of rules with a performance comparable to small
numbers of rules.

TABLE 2. Parameter values for different rulebase sizes.
rulebase size

factor empty small medium large

#events 0 50 250 500

#rules 0 50 250 500
of component

event occurrences 0 25 50 100

3.3. Benchmark Implementation

In order to run the benchmark for a concrete
ADBMS, the OO7 schema must be defined for the tested
system and OO7 databases must be created. The next
step specifies/compiles the ECA-rules for the system
and the chosen configuration (see Section 3.2). In the
final step, the desired tests are executed (see Figure 1).
Each system was tested with several dozen test iterations.
Each test was run once per iteration; in each test, the cor-
responding rule(s) was (were) triggered a fixed number
of times (currently, 10).

Each test computes the time that is spent for its execu-
tion. We primarily consider elapsed time, but also record
CPU-time (due to the fact that this process is subject to
operating system scheduling, process-specific CPU-time
can be a fraction of the total elapsed time).

BEAST is a fairly generic benchmark that should
apply to any ADBMS. Nevertheless, we also encoun-
tered several problems in implementing it for the vari-
ous ADBMS. These problems are mostly related to func-
tional differences apparent in the tested systems.

The prime difference is between Ode and the
other three tested systems. While ACOOD, NAOS, and
SAMOS implement the paradigm of traditional ECA-
rules as described above, Ode uses class-specific trig-
gers. Moreover, while an ECA-rule in one of the three
systems is either enabled or disabled, triggers in Ode are
activated per object on the basis of activation parameter
values. Thus, many activations of a trigger can exist for
one object.

During the implementation, several decisions had to
be made that (potentially) affect fairness of the bench-
mark tests. First, while dummy rules are not attached to
any specific class in the three systems, they have to be
assigned to classes in Ode. Assigning as many as possi-
ble dummy rules to a class that also defines triggers used
in the tests would slow down Ode. In the other extreme,
no dummy triggers for those classes would put Ode at an
advantage. Similarly, what is the correct number of ac-
tivations used for the tests? Since this concept does not
exist in other systems, it is hard to find a fair solution.
No activations for the event detection tests would favor
Ode, while too many activations would again put it at a
disadvantage.

Similar problems have been encountered for the other
systems. While SAMOS stores each component event
occurrence in the event history until it is consumed,
NAOS does not store these occurrences after the session

142 THEORY AND PRACTICE OF OBJECT SYSTEMS–1998

www.manaraa.com

for i = 1 to number_of_iterations
for t in Tests

for k = 1 to number_of_runs
generate t’s event
compute elapsed time

for execution of t

FIG. 1. Algorithm for executing a BEAST test series.

in which they have been raised is terminated. ACOOD
— due to its consumption mode — stores only a frac-
tion of the event history. Thus, as far as event detection
is concerned, SAMOS is at a disadvantage, too.

Such problems are not specific to BEAST or its de-
sign, but we claim that they are typical for a designer
benchmark. Since the major aim is to assess the per-
formance of designs and implementations in general,
finding fair benchmark implementations for all systems
might be hard where there are great functional or ar-
chitectural differences. Alternatively, in an application-
oriented benchmark, the focus is on performance of en-
tire systems for typical applications. Once such a typical
application has been agreed upon, finding fair implemen-
tations is easier — whichever system offers “too much”
functionality will suffer performance penalties, and sys-
tems functionally inadequate will not pass the tests.

This situation has several implications on how to ap-
proach a designer benchmark. First, fairness is more
likely whenever systems are evaluated within a collabo-
rative effort involving designers from each tested system.
Second, the obtained results can be used to assess per-
formance of implementation techniques and bottlenecks
of each system. A generic benchmark is important, so
that — apart from the core tests — more tests or config-
urations can be added and customized so that the perfor-
mance problems of the system under consideration can
be identified. However, the results obtained cannot be
used to compare systems directly, i.e., to draw conclu-
sions as to which system definitely is the fastest one.

4. Benchmark Results

In this section, we present the results obtained by
running BEAST on each of the four systems.

All the results represent elapsed time in milliseconds
(ms). Further statistical data (including min/max values,
standard deviation, and 90% confidence intervals [27])
have been computed to calibrate the test series, but are
not reported here. Below we present the results and then
discuss them in Section 4.5.

4.1. Results for ACOOD

ACOOD has been tested on a SUN SPARC-
Server10/51 under SUNOS 4.1.3.

ACOOD scales well (Figure 2), i.e., the measured
times are almost constant and independent of the rule-
base size. The functionality in ACOOD is restricted to
the recent event consumption mode and the immedi-
ate coupling mode. This increases the performance in
ACOOD as, e.g., the recent consumption mode is not
sensitive to the event history. On the other hand it also
restricts the number of BEAST scenarios that can be
tested on ACOOD. As a consequence, test results for
RE-02 and RE-03 are not available.

The results obtained for event detection, rule manage-
ment, and rule execution are acceptable for our purposes.
ACOOD is based on an array technique [15] for detec-
tion of composite events which is efficient for the de-
tectable events. Rules in ACOOD are indexed by events
[2], which speeds up the process of selecting triggered
rules. Due to the architectural style of ACOOD (layered
approach), we have not been able to efficiently implement
transaction events. Thus, results for ED-03 and ED-11
are missing. ACOOD does not offer a large set of event
type constructors. For instance, it is not possible to spec-
ify the detection of a non-occurrence of an event. As a
consequence, results for ED-07 are not available.

Rule execution in ACOOD is acceptable, but it can
be considerably improved since the current implementa-

FIG. 2. Results for ACOOD.

THEORY AND PRACTICE OF OBJECT SYSTEMS–1998 143

www.manaraa.com

FIG. 3. Results for NAOS

tion does not support optimization of conditions, concur-
rent evaluation of conditions, and concurrent execution
of rules.

4.2. Results for NAOS

NAOS has been tested on a Sun Sparc Station IPX
under SunOS 4.1.3 using O2 (version 4.5.6). It scales
well for growing rule bases (Figure 3).

The time obtained for ED-03 comes mainly from the
validation and begin transaction statements necessary to
test. The same test performed without rule execution
spends almost the same time (100ms for the large config-
uration). So the global overhead introduced here by rules
is negligible. The times for composite event recognition
(ED-06, -07, -09, -11) are fine except for ED-08 (10 oc-
currences of the same event). For this test we consider
a sequence of 10 events as NAOS does not currently

FIG. 4. Results for Ode.

144 THEORY AND PRACTICE OF OBJECT SYSTEMS–1998

www.manaraa.com

offer a specific times-operator. ED-11 is good because
same transaction is an implicit restriction in NAOS.
Since NAOS does not maintain the event history across
different sessions, there is no performance penalty for
growing event histories.

Rule retrieval time (RM-01) is quite good because
NAOS works with a main memory representation of
rules (created at database open time) indexed by event
types. The results for RE-04 and RE-05 show that there
is no overhead due to the rule ordering. These results
were expected as rules are ordered at definition time.
However, since the rules are executed sequentially, the
global time for these tests is not really good. For each
rule the condition is evaluated to take into account the
effects of the rules executed before. In tests RE-04 and
RE-05 the method used in the condition is time consum-
ing (400ms).

4.3. Results for Ode

Ode has been tested on a SUN-SparcServer 4/690
under SUNOS 4.1.3 (see Figure 4).

An Ode trigger must be activated or it will never
fire. If the corresponding event occurs, the event mask
is evaluated, and if it evaluates to true then the trigger is
fired. Given that Ode identifies both complex and primi-
tive events using the same extended finite state machine

mechanism [29], it takes exactly the same amount of time
to detect that an event of interest has occurred whether
the event is simple or complex unless masks (conditions)
must be evaluated.6 If a mask involves an expensive com-
putation or if several masks must be evaluated, identi-
fying a composite event will take proportionately more
time. However, in the experiments the masks were sim-
ple enough that identifying the occurrence of either a
primitive or a complex event of interest to a trigger ac-
tivation took roughly the same amount of time.

Initially, we considered the event mask as the analo-
gon to conditions in ECA-rules, and consequently spec-
ified them in such a way that they always evaluated to
false for event detection tests. However, trigger activa-
tions are not deleted if this mask evaluates to false be-
cause they have never fired (and never will fire). Thus,
the number of trigger activations in the system grows
over time, and each activation must be alerted when an
event is posted to its corresponding object. This is the
reason for the increase in the measured times (e.g., for
ED-08).

4.4. Results for SAMOS

SAMOS has been tested on a SUN-SparcServer 4/690
under SUNOS 4.1.3.

FIG. 5. Results for Samos.

THEORY AND PRACTICE OF OBJECT SYSTEMS–1998 145

www.manaraa.com

The major reasons for the high execution times (see
Figure 5) in SAMOS are the complexity of the system,
the additional functionality it has, and the way event de-
tection is implemented.

SAMOS scales quite well for growing rulebases as
far as primitive event detection and rule execution is
concerned. This is due to indexing and clustering event
descriptions and rule information. Measured times are
rather high for composite event detection, since (1) lots
of objects forming the Petri Net used for composite event
detection are stored on disk and, (2) no clustering is ap-
plied to those objects.

Furthermore, SAMOS (i.e., its composite event de-
tector) is sensitive to the number of existing component
event occurrences. In ED-11 for the large rulebase, e.g.,
100 component events already exist when are raised be-
fore the tests actually start (see Table 2). These events
are stored persistently and are considered for event com-
position during each test ED-11. Without these (useless)
component events, the average execution time of ED-11
is 2515 ms for the large rulebase, and thus the execution
time is almost constant for this test (see Figure 6).

4.5. Discussion of Results

We consider it an achievement that several object-
oriented ADBMS-prototypes are now available. As the
tests show, they perform some of their tasks in a timely
manner (e.g., action execution does not seem to cause
major performance problems).

Let us now generalize the performance results. We
are thereby primarily considering runtime performance
while neglecting design decisions related to functional-
ity or compile time performance. We are mostly inter-
ested in understanding the performance characteristics
of the various implementation techniques and architec-
tures, while constructing a ranked list of fast and slow
systems is a non-issue.7

4.5.1. Trade-offs. The first conclusion to be drawn
from the test results is the trade-off between function-

FIG. 6. Results for Samos (with and without initialization of event
history).

ality and performance. NAOS and Ode offer less func-
tionality than SAMOS and ACOOD in that they do not
support event parameters being passed to conditions and
actions for all kinds of event types. Primitive event de-
tection and event composition are therefore potentially
faster in NAOS and Ode. Second, NAOS does not sup-
port explicit event restrictions (such as same transac-
tion), which are supported in SAMOS. Upon event com-
position, NAOS is thus potentially faster since it can take
any event occurrence for composition, but does not need
to select those event occurrences that fulfill the event
restriction.

One the other hand, event parameters and event re-
strictions are considered useful constructs. If they are
thus desired, then one has either to build them into the
ECA-rule model (as is done in Ode for the same ob-
ject restriction), or to accept the runtime cost. Another
trade-off is that between compile-time and runtime per-
formance. For instance, if class-internal rules are sup-
ported, compile-time performance is worse, but runtime
performance is improved.

4.5.2. Event detection. A centralized event detector is
notified about all events. It then needs to retrieve the
event description from the rulebase and to determine
event parameters (in ACOOD/SAMOS). Furthermore, in
SAMOS the composite event detector has to reconstruct
the Petri Net parts it needs, which in turn are represented
as objects and spread all over the database. In the local
approach, most of the information is already available,
since it is kept local to objects (as in Ode). This explains
why Ode detects composite events faster and scales well
for growing rulebases.

4.5.3. Event history management. For some tests, the
number of initially raised component events is a fac-
tor, i.e., the event history is not empty when the tests
start. Especially if event parameters are required for sub-
sequent rule execution, then the event history must be
maintained, either explicitly or implicitly in the state of
the event detector(s). Two observations are apparent with
respect to event history management:

• The recent consumption mode seems to be more ef-
ficient, since upon event composition the entire event
history might have to be scanned in chronicle con-
sumption mode. This is the reason why ACOOD
(which uses the recent mode) — unlike SAMOS —
is not sensitive to the size of the event history.

• If the chronicle consumption mode is used, then
garbage collection of old event occurrences is a cru-
cial task. For instance, in ED11, the initially raised
component event occurrences are of no use, since a
same transaction restriction is specified. Garbage
collection would discard these occurrences even be-
fore the tests actually start and thus would make
SAMOS five times faster for some tests.

146 THEORY AND PRACTICE OF OBJECT SYSTEMS–1998

www.manaraa.com

• Two systems (ACOOD and NAOS) do not need to
maintain full event histories due to their consump-
tion modes. NAOS uses a main memory graph for
event detection which is constructed when a database
is opened and discarded when the database is closed.
Since NAOS does not maintain the event history
across multiple sessions, it does not suffer the perfor-
mance penalties of SAMOS (and to a lesser degree
also Ode) implied by event history management.

4.5.4. Condition evaluation. The current prototypes
do not perform any kind of optimization or pre-analysis
of conditions. A very basic approach might be to perform
pre-analysis, during which constant expressions would
be detected (none of the systems recognized the constant,
false condition or mask in event detection tests). Con-
dition evaluation optimization might also be improved,
since none of the systems recognized that the same con-
dition was used in each of the four associated rules for
RE-04. Thus, optimizing sets of conditions together or in-
crementally might further improve performance of rule
execution (note that this has already been investigated
for relational and production-rule systems, e.g., [16]).

4.5.5. Observations on architectural styles. It is not
generally justified based on our results to conclude that
integrated architectures have better performance than
layered architectures — performance depends on a va-
riety of implementation choices. Even integrated archi-
tectures use some kind of lower-level platform (e.g., Ode
uses EOS) and both the performance of this platform and
the chosen implementation techniques significantly im-
pact performance. Nevertheless, in integrated architec-
tures there is a higher degree of freedom when choos-
ing techniques (e.g., for event detection) — for instance,
some of Ode’s techniques are not applicable in a layered
system. Thus, well-designed integrated architectures can
be expected to have better performance because they can
choose any appropriate technique. However, the perfor-
mance difference between a layered and a non-layered
architecture employing the same techniques may or may
not be significant.

4.5.6. Summary. The measurements allow us to verify
or falsify most of the hypothesis formulated above (see
Table 3).

We now conclude this section by addressing two
groups of questions:

• Which open problems need to be addressed in order
to improve ADBMS-performance?

• What do the tests teach about better ADBMS imple-
mentations? To which extent do the tests help in de-
cisions on implementation techniques, functionality,
and optimization?

The most important open problem is the missing
agreement on ADBMS-application requirements. If we
can identify the functional requirements an ADBMS
must satisfy, we can pick implementation techniques that
offer optimal performance for those requirements.

Another still open problem is physical database design
for event histories. In systems such as SAMOS, which
store potentially large backlogs of event occurrences,
the major part of the increase in event detection time
is due to large event histories. Thus, whenever the event
history must be kept persistent, sophisticated clustering
and indexing techniques must be tailored to event his-
tory management in order to keep performance tolerable.
Furthermore, especially when conditions are typically
complex and may share parts with other conditions, so-
phisticated condition optimization techniques might im-
prove rule execution performance. Finally, while most of
the current systems execute rules sequentially and block
the application program for the rule execution time, con-
current execution of actions can also speed up rule exe-
cution [13]. This feature requires more work to be done
in rule scheduling and ADBMS-architecture (e.g., multi-
threading).

In addition to these open problems, the measurements
allow one to draw several conclusions concerning the
performance of implementation techniques. The mea-
surements show that avoiding a central event detector
and a central function used to generate events (such as
raise_event in SAMOS) is crucial. Event detection is
generally more efficient if primitive events can be de-
tected either within objects or by dedicated event de-

TABLE 3. Evaluation of hypothesis.

Hypothesis Result
H1 More expressive power leads to worse runtime performance partially true
H2 A large set of event type constructors degrades runtime performance false
H3 Support for composite event restrictions degrades performance true
H4 Centralized event detectors perform worse than dedicated event detectors true
H5 Class-specific ECA-rules and event detection are more efficient true
H6 Support for event histories degrades performance true
H7 The recent consumption mode is the most efficient one true
H8 Concurrent rule execution improves performance could not be tested
H9 Sophisticated condition evaluation improves rule execution performance could not be tested
H10 Integrated architectures are more efficient than layered architectures not necessarily true
H11 ADBMS-performance should be independent on the rulebase size true
H12 Event detection should scale well for growing event histories true

THEORY AND PRACTICE OF OBJECT SYSTEMS–1998 147

www.manaraa.com

tectors. The structures of the composite event detectors
must be kept as simple as possible — the structures and
the data needed by a composite event detector should not
be spread across many persistent objects. Our experience
is that if two event detectors have the same functional-
ity, then the one with the more complex structure and the
larger number of required persistent objects will perform
worse.

Further conclusions concerning the trade-off between
functionality and performance can be made. In other
words, provided a thorough knowledge of the require-
ments to be met, we can reason about sufficiently effi-
cient ADBMS-implementation techniques.

Whenever (in the intended application domain) rules
are mostly related to single classes and there are not too
many rules per class, class-specific rules generally im-
ply a performance gain. Likewise, restricting the set of
event type constructors to be as small as possible sim-
plifies the event detector, and thus also leads to perfor-
mance improvements. Furthermore, a consumption mode
that requires only bounded storage per trigger (e.g., re-
cent, chronicle as implemented by Ode) should be used
whenever appropriate for the intended applications, since
it leads to faster composite event detection. The event
history should only then be stored persistently if appli-
cation classes need to monitor composite events across
sessions. Ultimately, if typically component event (pa-
rameters) are only of interest if they occur within the
same transaction, then one should distinguish event de-
tection local to transactions and global event detection
(as in Sentinel [9]).

5. Conclusion and Future Work

Four ADBMS have been benchmarked. This bench-
marking was not possible when the work on BEAST
started in 1994, since far fewer systems were operational
back then. The systems we have tested are quite power-
ful and efficient for certain tasks.

The tests have also helped stabilize each of the sys-
tems, since implementing a predefined benchmark deter-
mined several bugs and limitations, and also helped un-
derstanding the performance of ADBMS. Concretely, we
learned about the performance characteristics of event
detection techniques (using a centralized, single event
detector vs. usage of many event detectors dedicated to
objects or event descriptions) as well as the performance
of composite event detectors. We also better understand
when factors such as the rulebase size or the event his-
tory size influence performance. The remaining perfor-
mance problems can be subdivided into two classes:

• trade-offs between performance and functionality in
some aspects, where either functionality must be re-
duced or its cost be accepted (e.g., class-independent
rules),

• open problems still to be addressed (e.g., event history
garbage collection and condition optimization).

As for future work, it would be interesting to test fur-
ther systems (e.g., Sentinel [9] or Monet [28]) as soon as
they are available. Furthermore, ADBMS-performance
evaluation in multi-user mode is a challenging topic.

Acknowledgments

We gratefully acknowledge the fruitful discussions
about BEAST with Robert Arlein, Alex Buchmann,
Klaus R. Dittrich, Andreas Eklund, Narain Gehani, and
Martin Kersten.

The work of the authors from Skövde and Zürich
has been supported in part by ACT-NET. ACT-NET
was a HCM network funded by the Commission of
the European Union; the Swiss part in ACT-NET has
been funded by the “Bundesamt für Bildung und Wis-
senschaft,” BBW. NAOS has been developed as part of
the ESPRIT-project GOODSTEP.

Notes

1. REACH [5] was also tested in the beginning of 1996 but is cur-
rently unavailable to us.

2. Abstract events are events that are not detected by the ADBMS,
but that have to be signaled explicitly by the application or the
user.

3. In general the precise point in time when an event occurred is not
known. However, in the BEAST tests, we enforce event occurrence
and thus know this point in time.

4. Composite events involving different objects/classes can be de-
tected by having triggers post abstract events to event detector
objects explicitly.

5. Masks are a generalization of conditions. Rather than merely
checking a single condition after an event is detected, the system
may evaluate several masks in the course of detecting an event.

6. If a composite event involves several masks, more than one mask
may need to be evaluated in response to a single basic event
occurrence.

7. The measurements cannot be compared directly to each other due
to the inherent differences of the systems as mentioned in Section
3.3 and because different hardware had to be used due to licensing
problems.

References

[1] Bancilhon, F., Delobel, C., and Kanellakis, P., eds. (1992).
Building an Object-Oriented Database System. The Story of
O2. Morgan Kaufmann.

[2] Berndtsson, M., (1994). Reactive object-oriented databases
and CIM. In: Proc. 5-th Int. Conf. on Database and Expert
System Applications, pp. 769–778, Athens, Greece, September
1994.

[3] Berndtsson, M., Chakravarthy, S., and Lings, B. (1997). Task
sharing among agents using reactive rules. In: Proc. 2-nd
IFCIS Conf. on Cooperative Information Systems, pp. 56–65,
Charleston, South Carolina, June 1997.

[4] Biliris, A., and Panagos, E. (1995). A high performance con-
figurable storage manager. In: Proc. 11-th Int. Conf. on Data
Engineering, pp. 35–43, Taipeh, Taiwan, March 1995.

148 THEORY AND PRACTICE OF OBJECT SYSTEMS–1998

www.manaraa.com

[5] Buchmann, A., Zimmermann, J., Blakely, J., and Wells, D.
(1995). Building an integrated active OODBMS: Require-
ments, architecture, and design decisions. In: Proc. 11-th
Int. Conf. on Data Engineering, pp. 117–128, Taipeh, Taiwan,
March 1995.

[6] Carey, M. J., DeWitt, D. J., Kant, C., and Naughton, J. F.
(1994). A status report on the OO7 benchmark. In: Proc. 9-
th Int. Conf. on Object-Oriented Programming Systems, Lan-
guages, and Applications, pp. 414–426, Portland, Oregon, Oc-
tober 1994.

[7] Carey, M. J., DeWitt, D. J., and Naughton, J. F. (1993). The
OO7 benchmark. In: Proc. ACM-SIGMOD Int. Conf. on Man-
agement of Data, pp. 12–21, Washington, DC, May 1993.

[8] Ceri, S., and Widom, J. (1996). Applications of active
databases. In: Active Database Systems, J. Widom and S. Ceri,
eds., pp. 259–291. Morgan Kaufmann.

[9] Chakravarthy, S., Krishnaprasad, V., Anwar, E., and Kim,
S.-K. (1994). Composite events for active databases: Seman-
tics, contexts and detection. In: Proc. 20-th Int. Conf. on Very
Large Data Bases, pp. 606–617, Santiago, Chile, September
1994.

[10] Collet, C., and Coupaye, T. (1996). Composite events in NAOS.
In: Proc. 7-th Int. Conf. on Database and Expert Systems
Applications, pp. 244–253, Zurich, Switzerland, September
1996.

[11] Collet, C., Coupaye, T., and Svensen, T. (1994). NAOS: Effi-
cient and modular reactive capabilities in an object-oriented
database system. In: Proc. 20-th Int. Conf. on Very Large Data
Bases, pp. 132–143, Santiago, Chile, September 1994.

[12] Collet, C., Habraken, P., Coupaye, T., and Adiba, M. (1994).
Active rules for the software engineering platform GOOD-
STEP. In: Proc. 2-nd Int. Workshop on Database and Software
Engineering, 16-th IEEE Int. Conf. on Software Engineering,
Sorrento, Italy, May 1994.

[13] Collet, C., and Machado, J. (1995). Optimization of active
rules with parallelism. In: Proc. 1-st Int. Workshop on Ac-
tive and Real-Time Database Systems, pp. 82–103, Skövde,
Sweden, June 1995.

[14] Dayal, U., Blaustein, B., Buchmann, A., Chakravarthy, U.,
Hsu, M., Ladin, R., McCarthy, D., Rosenthal, A., and Sarin,
S. (1988). The HiPAC project: Combining active databases
and timing constraints. ACM SIGMOD Record, 17(3):51–70.

[15] J. Eriksson, J. (1993). CEDE: Composite Event Detector in
an Active Object-Oriented Database. Master’s Thesis, De-
partment of Computer Science, University of Skövde.

[16] Fabret, F., Regnier, M., and Simon, E. (1993). An adaptive
algorithm for incremental evaluation of production rules in
databases. In: Proc. 19-th Int. Conf. on Very Large Data Bases,
pp. 455–466, Dublin, Ireland, August 1993.

[17] Gatziu, S., and Dittrich, K. R. (1994). Detecting composite
events in an active database systems using Petri nets. In: Proc.
4-th Int. Workshop on Research Issues in Data Engineering:
Active Database Systems, pp. 2–9, Houston, Texas, February
1994.

[18] Gatziu, S., Geppert, A., and Dittrich, K. (1991). Integrat-
ing active concepts into an object-oriented database system.
In: Proc. 3-rd Int. Workshop on Database Programming Lan-

guages, Nafplion, Greece, August 1991.
[19] Gehani, N. H., Jagadish, H. V., and Shmueli, O. (1992). Com-

posite event specification in active databases: Model & im-
plementation. In: Proc. 18-th Int. Conf. on Very Large Data
Bases, pp. 327–338, Barcelona, Spain, August 1992.

[20] Gehani, N. H., and Lieuwen, D. (1997). Ode triggers: Mon-
itoring the stock market. Software Practice & Experience,
27(8):905–927.

[21] Geppert, A., and Dittrich, K. (1995). Specification and im-
plementation of consistency constraints in object-oriented
database systems: Applying programming-by-contract. In: GI-
Fachtagung Datenbanken in Büro, Technik und Wissenschaft
(BTW), pp. 322–337, Dresden, Germany, March 1995.

[22] Geppert, A., Gatziu, S., and Dittrich, K. (1995). A designer’s
benchmark for active database management systems: OO7
meets the beast. In: Proc. 2-nd Int. Workshop on Rules in
Database Systems, pp. 309–323, Athens, Greece, September
1995.

[23] Geppert, A., Gatziu, S., Dittrich, K. R., Fritschi, H., and
Vaduva, A. (1995). Architecture and Implementation of the Ac-
tive Object-oriented Database Management System SAMOS.
Technical Report 95.29, Department of Computer Science,
University of Zurich.

[24] Geppert, A., Kradolfer, M., and Tombros, D. (1995). Real-
ization of cooperative agents using an active object-oriented
database management system. In: Proc. 2-nd Int. Workshop on
Rules in Database Systems, Athens, Greece, September 1995.

[25] Gray, J., ed., (1993). The Benchmark Handbook for Database
and Transaction Processing Systems. Morgan Kaufmann.

[26] Jagadish, H. V., Lieuwen, D., Rastogi, R., Silberschatz, A., and
Sudarshan, S. (1994). Dali: A high performance main memory
storage manager. In: Proc. 20-th Int. Conf. on Very Large Data
Bases, pp. 48–59, Santiago, Chile, September 1994.

[27] Jain, R. (1991). The Art of Computer Systems Performance
Analysis. Techniques for Experimental Design, Measurement,
Simulation, and Modeling. Wiley.

[28] Kersten, M. L. (1995). An active component for a parallel
database kernel. In: Proc. 2-nd Int. Workshop on Rules In
Database Systems, pp. 277–291, Athens, Greece, September
1995.

[29] Lieuwen, D. F., Gehani, N., and Arlein, R. (1996). The Ode
active database: Trigger semantics and implementation. In:
Proc. 12-th Int. Conf. on Data Engineering, pp. 412–420, New
Orleans, March 1996.

[30] Oracle Corporation, (1995). Oracle7 Server: SQL Reference.
Release 7.2, April 1995.

[31] Sybase Inc., Berkeley, CA. (1988). SYBASE — Data Server.
[32] Tombros, D., Geppert, A., and Dittrich, K. R. (1996). Design

and implementation of process-oriented environments with
brokers and services. In: Object-Orientation with Parallelism
and Persistence, B. Freitag, C. B. Jones, C. Lengauer, and
H.-J. Schek, eds., Chapter 10, pp. 197–216. Kluwer.

[33] Widom, J. (1994). Research issues in active database sys-
tems: Report from the closing panel at RIDE-ADS ’94. ACM
SIGMOD Record, 23(3):41–43.

[34] Widom, J., and Ceri, S., eds. (1996). Active Database Systems.
Morgan Kaufmann.

THEORY AND PRACTICE OF OBJECT SYSTEMS–1998 149

